
0 7 4 0 - 7 4 5 9 / 0 4 / $ 2 0 . 0 0 © 2 0 0 4 I E E E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y I E E E S O F T W A R E 2 1

design
E d i t o r : M a r t i n F o w l e r ■ T h o u g h t Wo r k s ■ f o w l e r @ a c m . o r g

T
he most annoying aspect of software de-
velopment, for me, is debugging. I don’t
mind the kinds of bugs that yield to a
few minutes’ inspection. The bugs I
hate are the ones that show up only af-
ter hours of successful operation, under

unusual circumstances, or whose stack traces
lead to dead ends.

Fortunately, there’s a simple technique that
will dramatically reduce the number of these

bugs in your software. It won’t re-
duce the overall number of bugs, at
least not at first, but it’ll make
most defects much easier to find.

The technique is to build your
software to “fail fast.”

Immediate and
visible failure

Some people recommend mak-
ing your software robust by work-
ing around problems automatically.

This results in the software “failing slowly.”
The program continues working right after an
error but fails in strange ways later on.

A system that fails fast does exactly the op-
posite: when a problem occurs, it fails imme-
diately and visibly. Failing fast is a nonintuitive
technique: “failing immediately and visibly”
sounds like it would make your software more
fragile, but it actually makes it more robust.
Bugs are easier to find and fix, so fewer go into
production.

For example, consider a method that reads
a property from a configuration file. What
should happen when the property isn’t pre-

sent? A common approach is to return null
or a default value:

public int maxConnections() {

string property =

getProperty(“maxConnections”);

if (property == null) {

return 10;

}

else {

return property.toInt();

}

}

In contrast, a program that fails fast will
throw an exception:

public int maxConnections() {

string property =

getProperty(“maxConnections”);

if (property == null) {

throw new NullReferenceException

(“maxConnections property not

found in “ +

this.configFilePath);

}

else {

return property.toInt();

}

}

Imagine this method is part of a Web-based
system that’s undergoing a minor upgrade. In this
release, let’s say the developer accidentally intro-
duces a typo in the configuration file, triggering
the error-handling code. For the code that returns

Fail Fast

Jim Shore

a default value, everything will seem fine. But
when customers start using the software, they’ll
encounter mysterious slowdowns. Figuring it out
could take days of hair pulling.

The outcome is much different when we
write the software to fail fast. The instant the
developer introduces the typo, the software
stops functioning, saying maxConnections
property not found in c:\projects\

SuperSoftware\config.properties. The
developer slaps his or her forehead and spends
30 seconds fixing the problem.

Fail-fast fundamentals
Assertions are the key to failing fast. An as-

sertion is a tiny piece of code that checks a con-
dition and then fails if the condition isn’t met. So,
when something starts to go wrong, an assertion
detects the problem and makes it visible.

Most languages have built-in assertions,
but they don’t always throw exceptions.
They’re also usually pretty generic, limit-
ing expressiveness and causing duplica-
tion. For these reasons, I usually prefer to
implement my own assertion class, as Fig-
ure 1 shows.

However, it’s tough to know when to
add assertions. One way to tell is to look
for comments. Comments often docu-
ment assumptions about how a piece of
code works or how it should be called.
When you see those comments, or feel
like writing one, think about how you
can turn it into an assertion instead.

When you’re writing a method, avoid
writing assertions for problems in the

method itself. Tests, particularly test-driven de-
velopment, are a better way of ensuring the cor-
rectness of individual methods. Assertions shine
in their ability to flush out problems in the
seams of the system. Use them to show mis-
takes in how the rest of the system interacts
with your method.

Writing assertions
A good example of the finesse needed to

use assertions well is Assert.notNull().
Null reference exceptions are a common
symptom of defects in my programs, so I’d
like my software to tell me when a null refer-
ence is created inappropriately.

On the other hand, if I used Assert.
notNull() after every single variable assign-
ment, my code would drown in a sea of useless
assertions. So I put myself in the shoes of the

2 2 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

DESIGN

Figure 1. An assert class in Java.

public class Assert {

public static void true(bool condition, string message) {

if (!condition) throw new AssertionException(message);

}

public static void notNull(object o) {

if (o == null) throw new NullReferenceException();

}

public static void cantReach(string message) {

throw new UnreachableCodeException(message);

}

public static void impossibleException(Throwable e, string message) {

throw new UnreachableCodeException(e, message);

}

}

Figure 2. A stack trace
that leads to a null
reference (C#).

1 public static void Main()

2 {

3 WriteCenteredLine(null);

4 }

5

6 public void WriteCenteredLine(string text)

7 {

8 int screenWidth = 80;

9 int paddingSize = (screenWidth – text.Length) / 2;

10 string padding = new string(‘ ‘, paddingSize);

11 Console.WriteLine(padding + text);

12 }

luckless developer debugging the system. When a
null reference exception occurs, how can I make
it easy for the developer to find the problem?

Sometimes, the language will automatically
tell us where the problem is. For example, Java
and C# throw a null reference exception when
a method is called on a null reference. In simple
cases, the exception’s stack trace will lead us to
the source of the problem, as in this example:

System.NullReferenceException

at Example.WriteCenteredLine()

in example.cs:line 9

at Example.Main() in

example.cs:line 3

Here, tracing backwards through the stack
trace leads us to line 3, where we see a null ref-
erence being passed into a method (see Figure
2). The answer’s not always obvious, but a
few minutes of digging will find it.

Now consider a more complicated case,
such as

System.NullReferenceException

at Example.Main() in

example.cs:line 22

at FancyConsole.Main() in

example.cs:line 6

Here, the stack trace leads to lines 6 and 22,
which doesn’t help at all (see Figure 3). The real
error is at line 17: getProperty() returns null,
causing an exception when _titleBorder is
dereferenced at line 22. The stack trace leads to
a dead end in this case—typical of code designed
to fail slowly—requiring tedious debugging.

It’s this latter case that I want to prevent. I
need the program to give me enough informa-
tion to find bugs easily. So for my code, I’ve in-
stituted the following rule of thumb: in most
cases, the program will fail fast by default, so I
don’t do anything special about null references
(see Figure 4a). However, when I assign a pa-
rameter to an instance variable, the program
won’t fail fast without my help, so I assert that
the parameter is not null (see Figure 4b).

This rule of thumb could be helpful for
your programs, too, but the main point here is
the thought process I went through. When
adding assertions to your code, follow a line
of reasoning like the one I used for null refer-
ence exceptions. Think about what kinds of
defects are possible and how they occur. Place
your assertions so that the software fails ear-

S e p t e m b e r / O c t o b e r 2 0 0 4 I E E E S O F T W A R E 2 3

DESIGN

Figure 3. A stack trace that leads to a dead end (C#).

1 public class Example

2 {

3 public static void Main()

4 {

5 FancyConsole out = new FancyConsole();

6 out.WriteTitle(“text”);

7 }

8 }

9

10 public class FancyConsole()

11 {

12 private const screenWidth = 80;

13 private string _titleBorder;

14

15 public FancyConsole()

16 {

17 _titleBorder = getProperty(“titleBorder”);

18 }

19

20 public void WriteTitle(string text)

21 {

22 int borderSize = (screenWidth – text.Length)

/(_titleBorder.Length * 2);

23 string border = “”;

24 for (int i = 0; i < borderSize; i++)

25 {

26 border += _titleBorder;

27 }

28 Console.WriteLine(border + text + border);

29 }

30 }

Figure 4. An Assert.notNull() rule of thumb: (a) no assertion
necessary and (b) assertion needed.

public string toString(Object parameter) {

return parameter.toString();

}

(a)

public class Foo {

private Object _instanceVariable;

public Foo(Object instanceVariable) {

Assert.notNull(instanceVariable);

_instanceVariable = instanceVariable;

}

}

(b)

lier—close to the original problem—making
the problem easy to find. What kinds of prob-
lems are common in your code and how can
you use assertions to make them easy to fix?

Eliminate the debugger
In some cases, a stack trace is all you need to

find an error’s cause. In other cases, you must
know the contents of some variables. Although
you can find the variable data by reproducing
the error in a debugger, some errors are hard to
reproduce. Wouldn’t it be better if your pro-
gram told you exactly what went wrong?

When writing an assertion, think about what
kind of information you’ll need to fix the prob-
lem if the assertion fails. Include that informa-
tion in the assertion message. Don’t just repeat
the assertion’s condition; the stack trace will
lead to that. Instead, put the error in context.

For an example, we return to our configu-
ration file reader:

public string readProperty

(PropertyFile file,

string key) {

string result =

file.readProperty(key);

//// aasssseerrttiioonn ggooeess hheerree

return result;

}

You could write the assertion message in sev-
eral different ways. One possibility is

Assert.notNull(result, “result was

null”);

but that merely repeats the assertion condition.
Another possibility is

Assert.notNull(result, “can’t find

property”);

which gives some context but not enough to
eliminate the debugger.

A better assertion is

Assert.notNull(result, “can’t find

[“ + key + “] property in config

file [“ + file + “]”);

which gives just the right amount of
information.

You don’t need to go overboard
when writing assertion messages.
Assertions are for programmers, so
they don’t need to be user friendly,
just informative.

Robust failure
Failing fast seems like it could re-

sult in pretty fragile software. Sure, it
makes defects easier to find, but what
about when you deploy the software
to customers? We don’t want the ap-
plication to crash just because there’s
a typo in a configuration file.

One reaction to this fear is to dis-
able assertions in the field. Don’t do
that! Remember, an error that oc-
curs at the customer’s site made it
through your testing process. You’ll
probably have trouble reproducing
it. These errors are the hardest to
find, and a well-placed assertion ex-
plaining the problem could save you
days of effort.

On the other hand, a crash is
never appropriate. Fortunately, there’s
a middle ground. You can create a

2 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

DESIGN

Figure 5. Global error
handler for a C# batch-
processing system.

public static void Main() {

try

{

foreach (BatchCommand command in Batch())

{

try

{

command.Process();

}

catch (Exception e)

{

ReportError(“Exception in “ + command, e);

// continue with next command

}

}

}

catch (Exception e)

{

ReportError(“Exception in batch loader”, e);

// unrecoverable; must exit

}

}

private static void ReportError(string message, Exception e)

{

LogError(message, e);

PageSysAdmin(message);

}

global exception handler to gracefully handle
unexpected exceptions, such as assertions, and
bring them to the developers’ attention. For ex-
ample, a GUI-based program might display

an unexpected problem has occured

in an error dialog and provide an option to
email tech support. A batch-processing system
might page a system administrator and con-
tinue with the next transaction (see Figure 5 for
an example).

If you use a global exception handler, avoid
catch-all exception handlers in the rest of your
application. They’ll prevent exceptions from
reaching your global handler. Also, when you
use resources that have to be closed (such as
files), be sure to use finally blocks or using
statements (in C#) to clean them up. This way,
if an exception occurs, the application will be
returned to a fresh, working state.

B ugs add a lot of expense and risk to our
projects—not to mention, they’re a pain in
the neck to figure out. Since the hardest

part of debugging is often reproducing and
pinpointing errors, failing fast can reduce de-
bugging’s cost, and pain, significantly.

Furthermore, it’s a technique you can start
using right away. Be sure to implement a
global error handler so your overall stability
doesn’t suffer. Search your existing code for
catch-all exception handlers and either re-
move or refactor them. Then you’re ready to
gradually introduce assertions. Over time,
more and more errors will fail fast, and
you’ll see the cost of debugging decrease and
the quality of your system improve.

Jim Shore is the founder of Titanium I.T., a Portland, Ore., consultancy
specializing in helping software teams work more effectively. Contact him at
jshore@titanium-it.com.

S e p t e m b e r / O c t o b e r 2 0 0 4 I E E E S O F T W A R E 2 5

DESIGN

SET
INDUSTRY

STANDARDS

www.computer.org/standards/

HELP SHAPE FUTURE TECHNOLOGIES
■

JOIN AN IEEE COMPUTER SOCIETY STANDARDS WORKING GROUP AT

IEEE Computer Society members work together to define
standards like IEEE 802, 1003, 1394, 1284, and many more.

802.11
FireWire

token rings

gigabit Ethernet
wireless networks

enhanced parallel ports

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

